Orthotropic index for bone

Andrew J. Rapoff

Received: 29 December 2004 / Accepted: 21 October 2005 -^C Springer Science + Business Media, LLC 2006

Abstract An orthotropic index (*OI*) is proposed to indicate the existence of a preferred material direction in each of the symmetry planes of an orthotropic material such as bone. Currently, this function is performed by the anisotropy ratio (AR) of any two Young's moduli or compressive (A_c) and shear (*As*) anisotropy factors comprised of complicated functions of the elastic constants. The *OI* incorporates the four independent engineering constants (the shear modulus and Poisson's ratio in addition to the two Young's moduli) in each symmetry plane into a single index. The *OI* thus improves upon the *AR* by reflecting orthotropy in a more holistic sense and upon the *AR, Ac* and *As* by taking on a unique value (zero) only when the material is in fact isotropic.

1. Introduction

Bone usually is mechanically modeled as a linear elastic orthotropic material. Interpretation and comparison of measured elastic constants is obscured by the number needed to characterize an orthotropic material: nine, including three Young's moduli, three shear moduli, and three Poisson's ratios. One interpretation, the anisotropy ratio (*AR*) of any two principal Young's moduli [8], indicates the existence of preferred material directions but incorporates only two constants. Another interpretation is represented by the compressive (A_c) and shear (A_s) anisotropy factors [2,3,4], which incorporate all nine elastic constants into these two factors. The objective of this work is to propose an index that en-

A. J. Rapoff (\boxtimes)

Union College, Department of Mechanical Engineering, Schenectady, NY 12308-3107

e-mail: rapoff@union.edu, engineering.union.edu/∼rapoffa

ables comparisons between the constants in a more inclusive sense. The four elastic constants in each of the material symmetry planes are collapsed into a single orthotropic index (*OI*) that indicates the degree of orthotropy in each of the planes. This *OI* is demonstrated to take on a unique value for isotropic materials (the *AR, Ac* and *As* do not) and to retain the desirable characteristics of the *AR*, i.e., it is easy to apply and increases with the degree of material orientation.

2. Methods

Plane stress problems without body forces in orthotropic elasticity theory reduce to determining the stress function $F(x_1, x_2)$ which satisfies

$$
\frac{E_{11}}{E_{22}}\frac{\partial^4 F}{\partial x_1^4} + \left(\frac{E_{11}}{G_{12}} - 2\nu_{12}\right)\frac{\partial^4 F}{\partial x_1^2 \partial x_2^2} + \frac{\partial^4 F}{\partial x_2^4} = 0 \tag{1}
$$

and boundary conditions [6]. The E_{11} and E_{22} are Young's moduli, v_{12} a Poisson ratio, G_{12} a shear modulus. The subscripts "1" and "2" denote principal material directions in the x_1-x_2 symmetry plane. The roots μ_1 and μ_2 of the characteristic equation of Eq. (1) are such that

$$
-i(\mu_1 + \mu_2) = \sqrt{2\left(\frac{E_{11}}{E_{12}} - \nu_{12}\right) + \frac{E_{11}}{G_{12}}} \equiv 2\eta_{12} \tag{2}
$$

where $i = \sqrt{-1}$. The center of the equality of Eq. (2) contains the four constants which describe elastic behavior in the x_1 - x_2 plane and provides a ready nondimensional form from which the definition of the *OI* is based

$$
OI_{12} \equiv \max(|\eta_{12} - 1|, |\eta_{21} - 1|)
$$
\n(3)

where η_{21} is defined similarly by indicial substitution in Eq. (2). Similarly, O_{23} and O_{13} can be formulated as well.

3. Results and discussion

The *OI* may be a more useful indicator of orthotropy if it improves upon the *AR* while retaining its desirable characteristics. One improvement is the incorporation of twice as many elastic constants. Another improvement is that the *OI* takes on a unique value for isotropic materials whereas the *AR* does not. Using the *x*1-*x*² symmetry plane as an example, $AR_{12} = 1$ for materials that are isotropic in that plane. Since $E_{11} = E_{22}$ and $G_{12} = 1/2E_{11}/(1 + v_{12})$ for isotropic materials, it can be shown from Eqs. (2) and (3) that $\eta_{12} = \eta_{21} = 1$, so that $OI_{12} = 0$ is then true. However, an infinite number of possible orthotropic materials may still have $AR_{12} = 1$; for example, $E_{11} = E_{22} = 20 \text{ GPa}$, $G_{12} = 4 \text{ GPa}$, and $v_{12} = 0.4$ is one such orthotropic material. Orthotropic materials are such that $OI_{12} \neq 0$ will always be true, as the *OI* is defined herein. This is graphically demonstrated by plotting (Fig. 1) "regions" of the ratio of the primary Young's modulus to the shear modulus, E_{11}/G_{12} , so that $\eta_{12} = 1$, i.e.,

$$
\frac{E_{11}}{G_{12}} = 2\left(2 - \frac{E_{11}}{E_{22}} + \nu_{12}\right)
$$
(4)

as a function of the ratio of the Young's moduli E_{11}/E_{22} and the Poisson's ratio v_{12} for a variety of (possible and impossible) orthotropic materials. Note that the ordinate scale in Fig. 1 is increasing downward. The three shaded regions represent impossible orthotropic materials that violate thermodynamic constraints (shown in the shaded areas) on the engineering constants [7]. Possible orthotropic materials exist in the unshaded central region, such that $\eta_{12} = 1$ and $\eta_{21} \neq 1$, making $OI_{12} \neq 0$. Only along the upper axis lie isotropic materials for which $OI_{12} = 0$. Similar statements can be made regarding the other symmetry planes. This plot demonstrates that the *OI* defined herein takes on a unique value, zero, for isotropic materials only.

The desirable characteristics of the *AR* are maintained by the *OI.* One such characteristic is that the *OI* is easy to apply through a simple calculation, although admittedly less easy to memorize than the *AR.* Another such characteristic is that for bone and common engineering materials (in which $AR_{12} = E_{11}/E_{22} > 1$ if x_1 and x_2 are so chosen, $E_{11}/G_{12} > 1$, and $0.2 < v_{12} < 0.4$ are generally true), the *OI* can be shown to be a monotonically increasing function of E_{11}/E_{22} . Thus higher degrees of orthotropy as indicated by increasing *AR*s are reflected by increasing *OI*s as well.

The *OI* defined herein may prove to be a useful descriptor of bone orthotropic elasticity. Engineering constants, determined from ultrasonic measurements of bovine Haversian and plexiform [5] and human Haversian [1] bone were used to compute various *OI*s and compare them to their respective *AR*s (Fig. 2). The nearer an *OI* is to zero, the more the bone

Fig. 1 "Regions" of the ratio of the primary Young's modulus to the shear modulus, E_{11}/G_{12} , as a function of the ratio of the Young's moduli E_{11}/E_{22} and the Poisson's ratio v_{12} so that $\eta_{12} = 1$ for orthotropic materials.

Fig. 2 Comparison between the orthotropy factors (*OI* denoted by black-filled symbols) proposed herein and the anisotropy factors (*Ac* denoted by unfilled symbols and *As* by gray-filled symbols) of [2, 3, 4] versus anisotropy ratios (*AR*) for different bone types (bovine Haversian denoted by circles, bovine plexiform by triangles and human Haversian by diamonds). Isotropic materials plot at the coordinates (*AR, OI*) = $(1, 0)$, $(AR, A_c) = (1, 0)$ and $(AR, A_s) = (1, 0)$, but not all materials for which $AR = 1$, $A_c = 0$ or $A_s = 0$ are isotropic.

behaves like an isotropic material in that plane. Bone with a highly preferred material direction will be indicated by a relatively large *OI*, as is the case with the *AR.* However, *OI*s can be more discriminating than the*AR*s: differences between *OI*s for all 3 combinations of bone types (Fig. 2) taken two at a time were virtually always greater than differences between the *AR*s. By including more elastic constants in this type of descriptor, subtle differences in orthotropy become apparent, as opposed to the simply constructed *AR.* Further, for the data shown in Fig. 2, a clear increasing trend in A_c or A_s with increasing *AR* is not evident. Furthermore, the *AR*s, *Ac* and *As* can give false positives for isotropy, while the *OI*s cannot: admissible orthotropic (and not isotropic) materials can be found that result in $AR = 1$ or $A_c = 0$ and $A_s = 0$. Finally, the *OI* has an important mechanical interpretation, being related to stress concentrations about holes in orthotropic plates [6].

References

- 1. R. B. ASHMAN, S. C. COWIN, W. C. VANBUSKIRK and J. C. RICE, *J. Biomech.* **17** (1984) 349.
- 2. D. H. CHUNG and W. R. BUESSEM, In "Anisotropy in Single-Crystal Refractor Compounds" (Volume 2 edited by F.W. VAHLDIEK and S.A. MERSOL, Plenum Press, New York, 1968) p. 217.
- 3. R. F. S. HEARMON, *Adv. Phys.* **5** (1956) 323.
- 4. J. L. KATZ and A. MEUNIER, *J. Mat. Sci. Mat. Med.* **1** (1990) 1.
- 5. J. L. KATZ, H. S. YOON, S. LIPSON, R. MAHARIDGE, A. MEUNIER and P. CHRISTEL, *Calcif. Tissue Int.* **36** (1984) S31.
- 6. S. G. LEKHNITSKII, In "Anisotropic Plates" (Translated from 2nd Russian edition by S.W. TSAI and T. CHERON, Gordon and Breach Science Publishers, New York, 1968) p. 171.
- 7. B. M LEMPRIERE, *AIAA J.* **6** (1968) 2226.
- 8. C. H. TURNER, J. RHO, Y. TAKANO, T. Y. TSUI and
	- G. M. PHARR, *J. Biomech.* **32** (1999) 437.