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Abstract An orthotropic index (OI ) is proposed to indicate

the existence of a preferred material direction in each of the

symmetry planes of an orthotropic material such as bone.

Currently, this function is performed by the anisotropy ra-

tio (AR) of any two Young’s moduli or compressive (Ac)

and shear (As) anisotropy factors comprised of complicated

functions of the elastic constants. The OI incorporates the

four independent engineering constants (the shear modulus

and Poisson’s ratio in addition to the two Young’s mod-

uli) in each symmetry plane into a single index. The OI
thus improves upon the AR by reflecting orthotropy in a

more holistic sense and upon the AR, Ac and As by taking

on a unique value (zero) only when the material is in fact

isotropic.

1. Introduction

Bone usually is mechanically modeled as a linear elastic or-

thotropic material. Interpretation and comparison of mea-

sured elastic constants is obscured by the number needed to

characterize an orthotropic material: nine, including three

Young’s moduli, three shear moduli, and three Poisson’s

ratios. One interpretation, the anisotropy ratio (AR) of any

two principal Young’s moduli [8], indicates the existence of

preferred material directions but incorporates only two con-

stants. Another interpretation is represented by the compres-

sive (Ac) and shear (As) anisotropy factors [2,3,4], which

incorporate all nine elastic constants into these two factors.

The objective of this work is to propose an index that en-
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ables comparisons between the constants in a more inclu-

sive sense. The four elastic constants in each of the mate-

rial symmetry planes are collapsed into a single orthotropic

index (OI) that indicates the degree of orthotropy in each

of the planes. This OI is demonstrated to take on a unique

value for isotropic materials (the AR, Ac and As do not)

and to retain the desirable characteristics of the AR, i.e., it

is easy to apply and increases with the degree of material

orientation.

2. Methods

Plane stress problems without body forces in orthotropic

elasticity theory reduce to determining the stress function

F(x1, x2) which satisfies
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and boundary conditions [6]. The E11 and E22 are Young’s

moduli, v12 a Poisson ratio, G12 a shear modulus. The sub-

scripts “1” and “2” denote principal material directions in the

x1-x2 symmetry plane. The roots μ1 and μ2 of the character-

istic equation of Eq. (1) are such that

−i(μ1 + μ2) =
√

2
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)
+ E11
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≡ 2η12 (2)

where i = √−1. The center of the equality of Eq. (2) con-

tains the four constants which describe elastic behavior in the

x1-x2 plane and provides a ready nondimensional form from

which the definition of the OI is based
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OI12 ≡ max(|η12 − 1|, |η21 − l|) (3)

where η21 is defined similarly by indicial substitution in

Eq. (2). Similarly, OI23 and OI13 can be formulated as

well.

3. Results and discussion

The OI may be a more useful indicator of orthotropy if it

improves upon the AR while retaining its desirable charac-

teristics. One improvement is the incorporation of twice as

many elastic constants. Another improvement is that the OI
takes on a unique value for isotropic materials whereas the

AR does not. Using the x1-x2 symmetry plane as an example,

AR12 = 1 for materials that are isotropic in that plane. Since

E11 = E22 and G12 = 1/2E11/(1 + ν12) for isotropic materials,

it can be shown from Eqs. (2) and (3) that η12 = η21 = 1,

so that OI12 = 0 is then true. However, an infinite number of

possible orthotropic materials may still have AR12 = 1; for

example, E11 = E22 = 20 GPa, G12 = 4 GPa, and ν12 = 0.4

is one such orthotropic material. Orthotropic materials are

such that OI12 �= 0 will always be true, as the OI is defined

herein. This is graphically demonstrated by plotting (Fig. 1)

“regions” of the ratio of the primary Young’s modulus to the

shear modulus, E11/G12, so that η12 = 1, i.e.,

E11

G12

= 2

(
2 − E11

E22

+ ν12

)
(4)

Fig. 1 “Regions” of the ratio of the primary Young’s modulus to the
shear modulus, E11/G12, as a function of the ratio of the Young’s mod-
uli E11/E22 and the Poisson’s ratio v12 so that η12 = 1 for orthotropic
materials.

as a function of the ratio of the Young’s moduli E11/E22

and the Poisson’s ratio ν12 for a variety of (possible and

impossible) orthotropic materials. Note that the ordinate

scale in Fig. 1 is increasing downward. The three shaded

regions represent impossible orthotropic materials that vio-

late thermodynamic constraints (shown in the shaded areas)

on the engineering constants [7]. Possible orthotropic mate-

rials exist in the unshaded central region, such that η12 = 1

and η21 �= 1, making OI12 �= 0. Only along the upper axis lie

isotropic materials for which OI12 = 0. Similar statements

can be made regarding the other symmetry planes. This plot

demonstrates that the OI defined herein takes on a unique

value, zero, for isotropic materials only.

The desirable characteristics of the AR are maintained by

the OI. One such characteristic is that the OI is easy to ap-

ply through a simple calculation, although admittedly less

easy to memorize than the AR. Another such characteristic is

that for bone and common engineering materials (in which

AR12 = E11/E22 > 1 if x1 and x2 are so chosen, E11/G12 > 1,

and 0.2 < ν12 < 0.4 are generally true), the OI can be shown

to be a monotonically increasing function of E11/E22. Thus

higher degrees of orthotropy as indicated by increasing ARs

are reflected by increasing OIs as well.

The OI defined herein may prove to be a useful descriptor

of bone orthotropic elasticity. Engineering constants, deter-

mined from ultrasonic measurements of bovine Haversian

and plexiform [5] and human Haversian [1] bone were used

to compute various OIs and compare them to their respective

ARs (Fig. 2). The nearer an OI is to zero, the more the bone

Fig. 2 Comparison between the orthotropy factors (OI denoted by
black-filled symbols) proposed herein and the anisotropy factors (Ac

denoted by unfilled symbols and As by gray-filled symbols) of [2, 3, 4]
versus anisotropy ratios (AR) for different bone types (bovine Haversian
denoted by circles, bovine plexiform by triangles and human Haversian
by diamonds). Isotropic materials plot at the coordinates (AR, OI) =
(1, 0), (AR, Ac) = (1, 0) and (AR, As ) = (1, 0), but not all materials for
which AR = 1, Ac = 0 or As = 0 are isotropic.

Springer



J Mater Sci: Mater Med (2006) 17:803–805 805

behaves like an isotropic material in that plane. Bone with

a highly preferred material direction will be indicated by a

relatively large OI, as is the case with the AR. However, OIs
can be more discriminating than the ARs: differences between

OIs for all 3 combinations of bone types (Fig. 2) taken two at

a time were virtually always greater than differences between

the ARs. By including more elastic constants in this type of

descriptor, subtle differences in orthotropy become apparent,

as opposed to the simply constructed AR. Further, for the data

shown in Fig. 2, a clear increasing trend in Ac or As with in-

creasing AR is not evident. Furthermore, the ARs, Ac and As

can give false positives for isotropy, while the OIs cannot:

admissible orthotropic (and not isotropic) materials can be

found that result in AR = 1 or Ac = 0 and As = 0. Finally, the

OI has an important mechanical interpretation, being related

to stress concentrations about holes in orthotropic plates [6].
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